89. Synthesis and Circular Dichroism of Both Enantiomers of 2-Deuterofluoroacetic Acid $(=$ **Fluorof**²**H**, acetic Acid)

by Dagmar Gartz^a), Jennifer Reed^b), and János Rétey^a)*

^a) Lehrstuhl für Biochemie im Institut für Organische Chemie der Universität Karlsruhe, Richard-Willstatter-Allee, D-76 128 Karlsruhe

^b) Abteilung Pathochemie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg

(27.11.96)

Sharpless epoxidation of (E) *-l-(trimethylsilyl)[l-²H₁]oct-l-en-3-ol (3a) yielded (1S,2S,3S)- and (1R,2R,3R)***l**-(trimethylsilyl)-1,2-epoxy[1⁻²H_i]octan-3-ols (4a and 4b, resp.) which were converted in three steps into (S) - and (R) -fluoro $[^{2}H_{1}]$ acetic acid (7a and 7b, resp.) in good yields. Their high isotopic and optical purity was established by ¹H- and ¹⁹F-NMR, mass, and circular-dichroism spectroscopy.

Introduction. - Fluoroacetic acid can replace acetic acid in several enzymatic reactions - sometimes with fatal consequences. *E.g.,* in the 'lethal synthesis', citrate synthase catalyses the condensation of fluoroacetyl CoA with oxaloacetate to form $(2R,3R)$ -2fluorocitrate which is a mortal poison for most organisms. Some time ago, our group published a method for the preparation of (R) -fluoro $[^2H_1]$ acetic acid from (R) - $[^{2}H,]$ glycine using NaNO₂/HF/pyridine as reagent [1]. The steric course of this substitution (retention) was determined by analogy to the same reaction with L-isoleucine and *D* -alloisoleucine [2]. Since our previous method is tedious, expensive, and unsuitable for obtaining both possible enantiomers of fluoro $[^{2}H_{1}]$ acetic acid in pure form, we worked out a novel method for its preparation on which we report in the following.

Results. – *Synthesis of* (S)- and (R)-Fluorof²H, acetic Acids (7a and 7b, resp.). The synthetic route to the enantiomeric fluoro[*H,]acetic acids is outlined in the *Scheme.* The **1-(trimethylsilyl)oct-l-yn-3-ol (2),** prepared by reacting of oct-1-yn-3-01 **(1)** first with EtMgBr and then with Me,SiCl, was reduced with LiAlH,. Workup of the product in deuterium oxide (D₂O) yielded 1-(trimethylsilyl)[1-²H₁]oct-1-en-3-ol (3; $(E)/(Z)$ 5:1) with a high degree of deuteration [3]. The diastereoisomer mixture **3** was epoxidized under *Sharpless* conditions [4] [5] using both enantiomers of diisopropyl tartrate (DIPT) as chirality source. In both reactions, only the (E)-isomer **3a** was converted into the epoxide. The resulting $(1S, 2S, 3S)$ - and $(1R, 2R, 3R)$ -1-(trimethylsilyl)-1,2-epoxy[1-²H₁]octan-3-ols **(4a** and **4b,** resp.) were obtained with *ca.* 96 and 98% ee, respectively. The unreacted (Z)-isomer was separated by chromatography on silica gel. Substitution of the Me,Si group by a proton occurred with retention of configuration [6] [7]. The substitution reaction was conducted in tetrahydrofuran (THF) by subsequent addition of $KO(t-Bu)$, Bu,NF, and a saturated solution of NH,Cl, **4a** and **4b** yielding (1R,2S,3S)- and $(1S,2R,3R)$ - $1,2$ -epoxy^{[2}H₁]octan-3-ols (5a and 5b, resp.) in 93 and 94.4% ee, respectively. For the opening of the oxirane ring, several fluoride reagents were tried [8] [9]. Of those,

a) EtMgBr, THF, Me3SiC1; **H,SO,.** *b)* LiAlH,, THF; DzO. *c)* (-)-DIPT, Ti[O(i-Pr)],, t-BuOOH. *d)* (+)-DIPT, Ti[O(i-Pr)],, t-BuOOH. *e)* Bu4NF, THF, KO(t-Bu). *f)* Et3N.3 HF. g) RuCl,, NaI04, CC14/MeCN/H20.

only Et₃N. 3 HF [10–12] gave satisfactory results. Starting from 5a and 5b, we obtained $(1S,2S)$ - and $(1R,2R)$ -1-fluoro $[1-{}^{2}H_{1}]$ octane-2,3-diols **(6a** and **6b**, resp.), respectively. Oxidative cleavage of the diols with catalytic amounts of ruthenium trichloride and an excess of sodium metaperiodate [13] yielded the desired enantiomers, **7a** and **7b,** of fluoro $[^2H_1]$ acetic acid.

Optical Purity and Circular Dichroism of the Enantiomeric Fluoro[2H,jacetic Acids. Samples of both enantiomers 7a and 7b of fluoro^{[2}H_{r]}acetic acid were esterified with methyl $(-)$ - (R) -mandelate to yield the corresponding diastereoisomeric derivatives. Purification by **HPLC** afforded pure samples which were examined by 'H-NMR spectroscopy. The protons at the C'H'HF groups gave *dt's* at 5.03/4.84 and 5.09/4.91 ppm for the methyl mandelate derivatives of $(2R)$ - and $(2S)$ -fluoro $[^2H_1]$ acetic acids, respectively. Integration of the corresponding signals indicated that the enantiomer purity of the samples was better than 93 %. On the other hand, the degree of deuteration could be best determined by the ¹⁹F-NMR spectra. The ¹⁹F signals for the methyl mandelate derivatives of the fluoro $[^2H_1]$ acetic acids were observed at -231.79 and 231.95 ppm *(dt)*, whereas the signal of the unlabelled derivative was found at -230.97 ppm (t) . Integration of the signals revealed a degree of deuteration which was above 97%.

The circular-dichroism spectra were measured between 190 and 240 nm in 5 mM *Tris* **HCl** (pH 7.4) and in a CF₃CH₂OH solution. The resulting spectra are shown in the *Figure* and exhibited the expected mirror images for the two investigated enantiomers. The extrema of the CD spectra were found at 206 and 208 nm for the fluoro $[^2H_1]$ acetic acid solutions in *Tris* .HCl and CF,CH,OH, respectively.

Figure. *Circular-dichroism spectra oj(* **S** *J- and* (*R)-fluoro['H,]acetic acids* **(7a** and **7b,** resp.), a) *in* Tris . *HCI buffrr* (5 mM, pH 7.4; extrema at 206 nm, $\Phi = \pm 2.41 \cdot 10^{1}$) *and* b) *in CF₃CH₂OH* (extrema at 208 nm, $\Phi = \pm 1.95 \cdot 10^{1}$). (S) -Enantiomer 7a: \longrightarrow , (R) -enantiomer 7b: \longrightarrow .

Discussion. – Previously prepared samples of (R) -fluoro $[^{2}H]$ acetic acid (7b) were characterized only by H - and ¹⁹F-NMR spectroscopy and by the behavior of their coenzyme **A** esters in the citrate and malate synthase reactions [I]. Although these tests unambiguously defined their deuterium content and their absolute configuration, the original method was too expensive and tedious to prepare both enantiomers of fluoro- $[^{2}H_{1}]$ acetic acid in high purity and in quantities enough for further characterization.

The chirality-generating step in the present synthesis was a *Sharpless* epoxidation [4] [5] of ally1 alcohol **3a.** Essential for a high stereoselectivity was the introduction of a Me,Si substituent which in the chiral oxiranes **4a** and **4b** could be replaced by proton with complete retention of configuration [6] [7]. Opening the oxirane ring by F^- took place with complete inversion of configuration, thus generating the C^1H^2HF group with known sense of chirality in the diols **6a** and **6b.** Oxidative degradation led finally to the enantiomeric fluoro^{[2}H₁]acetic acids **7a** and **7b**, whose high enantiomer purity could be established by ¹H-NMR spectroscopy of their methyl $(-)$ - (R) -mandelate. Their CD curves showed perfect mirror images *(Fig.).* The absolute configuration of the enantiomeric fluoro $[^2H_1]$ acetic acids were also confirmed by the behavior of their coenzyme A esters in the citrate synthase reaction [I].

We thank the *Deutsche Forschungsgemeinschafr* and the *Fonds der Chemisehen Industrie* for financial support.

Experimental Part

1. *General.* Bu_dNF.3 H₂O, ruthenium(III) chloride hydrate, sodium (meta)periodate(NaIO₄), oct-1-yn-3-ol (1), titanium tetraisopropoxide, (+)-diisopropyl tartrate, (-)-diisopropyl tartrate, tert-butyl hydroperoxide (anh. in isooctane), Me₃SiCl, *N,N'*-dicyclohexylcarbodiimide, KO(t-Bu), (-)-(S)-malic acid, 4-(dimethylamino)pyridine, and (-)-(R)-methyl mandelate were products of *Fluka Chemicals*, Switzerland. Bromoethane and THF were from *Janssen Chimica* and Et₃N·3 HF from *Merck*, Darmstadt. All solvents were freshly distilled and dried prior to use. HPLC: *Merck-Hirarhi-L-6210* pump, *L4000* UV detector, *D-2500* chromato-integrator, silica1 gel *100-C8,* (15-30 µm) and *Hewlett-Packard-1050 C18* (3-60 mm), prep. columns. TLC: *Macherey & Nagel* silica gel 254 plastic plates; solvent systems *A:* hexane/AcOEt 7:3; *B:* CH₂Cl₂/AcOEt 40:1; detection by heating after treatment with **3** % ethanolic phosphomolybdenic acid. Prep. column chromatography (CC) was used for analysing the intermediates. M.p.: *Buchi* capillary m.p. instrument; uncorrected. NMR Spectra: *Bruker- WM-250* spectrometer for ¹H, ¹³C, and DEPT; *Bruker-AM-400* spectrometer for ¹H and ¹⁹F; CDCl₃ solns. containing Me₄Si as internal standard unless otherwise stated.

2. *I-(Trimethylsilyi)oct-I-yn-3-ot* **(2).** To the stirred suspension of Mg (7.3 g, 300 mmol) in dry THF (125 mi) under N_2 , bromoethane (24.5 ml, 300 mmol) was added dropwise at 50°. After complete addition, the temp. was kept at 50 \degree for 1 h, and then the mixture was cooled to $5\degree$. A soln. of oct-1-yn-3-ol (13.63 g, 108 mmol) in THF was cautiously added dropwise, and the suspension was stirred overnight. Then the soln. was cooled to 5° on ice, and Me₃SiCI (38.1 ml, 300 mmol) was added dropwise while maintaining the temp. at 25° . Then the mixture was refluxed for 2 h. After cooling, 2M aq. H_2SO_4 (50 ml) was added dropwise and the aq. phase extracted with Et₂O. The Et₂O layers were washed with H₂O and brine, dried (MgSO₄), and evaporated. The residue was purified by distillation. B.p. 90°/10 Torr. Yield: 20.92 g (106 mmol, 98%). ¹H-NMR: 0.06 (*t*, Me₃Si); 0.8 (*t*, Me(8)); 1.2–1.76 *(m, 4 CH₂); 4.2 (t, CHOH).* ¹³C-NMR: 106.92 *(C(1))*; 89.27 *(C(2))*; 62.91 *(CHOH)*; 37.64 *(CH₂)*; 31.37 *(CH₂)*; 24.49 (CH₂); 22.49 (CH₂); 13.94 (Me); -0.13 (Me₃Si).

3. *I-(Trimethyl~iIyl)(l-~H,]octan-3-ol* **(3).** A soln. of **2** (20 g, 100 mmol) in THF (50 ml) was added dropwise to a suspenson of LiAlH₄ (6 g, 160 mmol) in THF (250 ml) at 0°. The mixture was stirred overnight under N₂ at r.t. After the reaction was complete, $D₂O$ (15 ml) was added. The insoluble materials were filtered and washed with Et2O. The combined org. layers were dried (MgS04) and evaporated. The resulting product **3** (19.29 g, 96 mmol, 96%) was used without further purification. ¹H-NMR (250 MHz, CDCl₃): 0.06 (s, Me₃Si (E)); 0.13 (s, Me₃Si (Z)); 0.87 $(t, \text{Me}(8))$; 1.28-1.72 $(m, 4 \text{ CH}_2)$; 4.02 $(m, \text{CHOH}(E))$; 4.19 $(m, \text{CHOH}(Z))$; 5.98 $(m, J = 18.2, \text{H}-\text{C}(2)$ $(E))$; 6.16 *(d, J* = 13.4, H-C(2) *(Z)).* I3C-NMR: 150.11 (C(2) *(Z));* 148.57 (C(2) *(E));* 131.14 *(t. J* = 20.2, C(l) *(Z));* 128.72 $(t, J = 20.8, C(1)(E)$; 74.63 (CHOH); 36.85 (CH₂); 31.72 (CH₂); 25.08 (CH₂); 22.56 (CH₂); 13.98 (Me(8)); 0.41 (Me₁Si (Z)); -1.33 (Me₃Si (E)).

4. *I-* (Trimethylsilyl)-1,2-epoxy[1-²H₁]octan-3-ols (= α -Pentyl-3-(trimethylsilyl)[3-²H₁]oxirane-2-methanol; **4a** *and* **4b**). To a mixture of Ti[O(i-Pr)]₄ (18 g, 60 mmol, 1 equiv.) in CH₂Cl₂ (300 ml) and molecular sieve, a soln. of (+)-L-DIPT (16.86 g, 72 mmol, 1.2 equiv.) in CH_2Cl_2 (5 ml) was added under Ar. The resulting mixture was stirred for 10 min at -20° . After addition of 3 (12 g, 60 mmol, 1 equiv.), the resulting soln. was stirred for an additional 15 min, r-BuOOH (26 ml, 1.3 equiv.; 3M soln. in anh. isooctane) was added slowly, and the mixture was stirred for 5 h. Subsequently, Me₂S (2 ml, 1 equiv.) was added, and the mixture was stirred for 30 min at -20° . Then 10% aq. tartaric acid soln. (20 ml), Et₂O (150 ml), NaF (20 g), and *Celite* (10 g) were successively added. The mixture was stirred for 1 h at. r.t. and filtered. The precipitate was washed with Et_2O , the combined filtrate dried (MgSO₄) and evaporated and the residue chromatographed (Et₃N-deactivated silica gel, CH₂Cl₂/AcOEt 40:1). Yield: 3.68 g (17 mmol, 28% calc. for the mixture of **3a** and **3b) 4a.** ¹H-NMR: 0.07 *(t, J* = 3.2, Me₃Si); 0.89 *(t, J* = 6.8, Me(8)); 1.29-1.57 *(m,* 4 CH,); 1.87 (br. **s,** *J* = 1.76, OH); 2.86 *(d, J* = **3.1,** H-C(2)); 3.86 *(m. J* = 3.1, 2.3, CHOH). $13C-NMR: -3.70$ (Me₃Si); 14.03 (Me); 22.57 (CH₂); 24.90 (CH₂); 31.90 (CH₂); 33.57 (CH₂); 47.30 (t, t) ${}^{1}J(C,D) = 23.4, C(1)$; 58.33 (C(2)); 68.89 (CHOH).

Enantiomer 4b was prepared according to the same procedure using $(-)$ -D-DIPT.

5. 1,2-Epoxy[1-²H₁]octan-3-ols (= α -Pentyl[3-²H₁]oxirane-2-methanols; **5a** and **5b**). To an ice-cooled soln. of 4a (0.866 g, 3.9 mmol) in THF (20 ml), KO(t-Bu) (0.47 g, 4.2 mmol, 1.1 equiv.) was added, and the soln. was stirred for 2 min. Then Bu_4NF (1.63 g, 5 mmol, 1.4 equiv.) in THF (5 ml) was added. After another 10 min. sat. $NH₄Cl$ soln. (5 ml) was added and the mixture extracted with Et₂O. The Et₂O layers were dried (MgSO₄) and evaporated, and the residue was chromatographed (silica gel, hexane/AcOEt 7:3). Yield: 0.275 g (1.9 mmol, 49%) 5a. ¹H-NMR: 0.87 *(t, J* = 6.8, Me(8)); 1.29-1.55 *(m,* 4 CH₂); 1.88 *(br. s, OH); 2.7 <i>(d, J* = 3.9, H-C(1)); 2.99 *(t, J* = 3.4, 3.7, **H**-C(2)); 3.82 *(m, CHOH)*. ¹³C-NMR: 13.90 (Me(8)); 22.44 (CH₂); 24.86 (CH₂); 31.74 (CH₂); 35.31 $(CH₂)$; 43.01 $(t, J = 26.9, C(1))$; 54.41 $(C(2))$; 68.31 (CHOH).

Enantiomer 5b was prepared according to the same procedure using 4b.

6. *l-Fluoro*(l - 2H_l)*octane-2,3-diols* (6a and 6b). A soln. of 5a (0.6 g, 4.1 mmol) and Et₃N·3 HF (10 ml, 5.5 mmol) was stirred for 4 h at 80° under N₂. After cooling, CH₂Cl₂ (20 ml) was added and the mixture cautiously washed with sat. NaHCO₃ and aq. NaCl soln. The org. phase was dried $(MgSO₄)$ and evaporated and the residue chromatographed (silica gel, hexane/AcOEt 7:3): 6a. White solid. TLC: R_f 0.22. M.p. 85°. Yield: 0.25 g (1.5 mmol, **38%).** 'H-NMR: 0.88 *(I, J* = 6.6, Me(8)); 1.26-1.58 *(m,* 4 CH,); 1.96 *(d, J* = 5.1, OH); 2.44 *(d, J* = 5.1, OH); $3.72-3.82$ *(m,* $\frac{3J(H,F)}{2} = 19.2$, 2 CHOH); 4.46-4.68 *(dd, ²J*(H,F) = 46.8, H-C(1)). ¹³C-NMR: 14.00 *(Me(8))*; **22.54,25.45,31.69(CH,);32.52(t,CH,);72.15(d,3/(C,F)=6.9,CHOH):72.9(d,2J(C,F)=** 17.8,CHOH);83.61, 85.25 *(d,* ¹J(C,F) = 165.5, C(1)). ¹⁹F-NMR: -235.38 to -235.49 *(dm,* ¹J(F,H) = 47.9, ²J(F,H) = 19.4, ${}^{1}J(F,H) = 7.1$; 1.5% of non-deuterated substance (signals at -234.66 to -234.96 *(dt)).*

Enantiomer 6b was prepared according to the same procedure using **5b.**

7. *Fluoro[2-²H₁]acetic Acids* (7a and 7b). To a soln. of $\text{CCl}_4/\text{MeCN/H}_2\text{O}$ 2:2:3 **6a** (0.189 g, 1.1 mmol) was added. To the resulting biphasic mixture, sodium metaperiodate (1 g, 4.6 mmol, 4.1 equiv.) and a catalytic amount of ruthenium trichloride hydrate (6.9 mg 2.5%) were added, and the mixture was stirred vigorously for 2 h at r.t. Then, CH₂Cl₂ (5 ml) was added and the aq. phase extracted with CH₂Cl₂ (3 \times 10 ml) to remove hexanoic acid. After the addition of 7% aq. H₂SO₄ soln., the aq. phase was extracted with Et₂O (5 \times 30 ml). The Et₂O extract was dried (MgSO₄) and cautiously evaporated. Thus a yellow liquid was obtained which upon cooling to 0° yielded a white crystalline residue 7a (0.066 g, 0.8 mmol, 72%). ¹H-NMR: 4.81-4.99 *(dt, ²J*(F,H) = 46.9, ²J(H,D) = 2.4, H-C(2)); 9.07 (br. **s,** COOH). I3C-NMR **(CD2C12):** 78.91-76.03 *(di,* 'J(C,F) = 180, 'J(C,D) = 23.6, C(2)); 173.4 *(d, ²J*(C,F) = 21.9, COOH). ¹⁹F-NMR (D₂O buffer, pD 6.5): -217.9 to -218.1 *(dt, ¹J*(F,H) = 48.0, ${}^{1}J(F,D) = 6.6$).

Enantiomer 7b was prepared according to the same procedure, starting from 6b.

REFERENCES

- [I] R. Keck, H. Haas, J. Retey, *FEBS Lett.* 1980, *114,* 287.
- [2] R. Keck, J. Retey, *Helv. Chim. Actu* 1980,63, 769.
- [3] **J.** E. Baldwin, K. A. Black, *J. Org. Chem.* 1983,48, 2778.
- [4] **V. S.** Martin, **S. S.** Woodward, Y. Katsuki, Y. Yamada, M. Ikeda, K.B. Sharpless, *J. Am. Chem. Soc.* 1981, 103,6237.
- [5] F. Sato, T. Matsumoto, Y. Kitano, *Tetrahedron* 1988,44,4073.
- [6] T. H. Chan, P. W. K. Lau, M.P. Li, *Tetrahedron Lett.* 1976,31, 2667.
- [7] Y. Kobayashi, H. Uchiyama, H. Kanbara, M. Kusakabe, F. Sato, *Heterocycles* 1987,25,549.
- [8] Y-G. Suh, B-A. Koo, **J-A.** KO, **Y-S.** Cho, *Chem. Lett.* 1993,1907.
- [9] I. Lundt, D. Albanese, D. Landini, M. Penso, *Tetrahedron* 1993,4Y, 7295.
- [lo] A. Hedhli, **A.** Baklouti, *J. Fluorine Chm.* 1995, 70, 141.
- [ll] **J.** Umeaawa, 0. Takahashi, K. Furuhashi, M. Tagaki, *Tetrahedron: Asymmetry* 1993,4, 2053.
- [I21 A. I. Ayi, M. Remli, R. Condom, R. Guedj, *J. Fluorine Chem.* 1981, *17,* 565.
- **1131** H. J. Carlsen, T. Katsuki, **V.S.** Martin, K. B. Sharpless, *J. Org. Chem.* 1981,46, 3936.